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Develop slide repository with state-of-the-art quantitative pharmacology
applications to increase awareness, advocacy for and education in the area of

applied QP

Influence and Impact:
ASCPT is the scientific resource that influences decision-making on therapeutic usage for patient care

Education and Communication:
ASCPT builds upon its exceptional education offerings and family of journals to create value for members
and new audiences

ASCPT task force advancing pharmacometics and integration into drug
development in 2010

iDecide repository and 2010 CPT publication

Focus on creating repository of examples on regulatory decision making
EFPIA Working group on Model-informed drug discovery and development (MID3)

MID3 White Paper and compilation of case examples

Focus on illustrating the MID3 framework(skey g_uestions on compound, mechanism and disease the
)[/ﬁrlous ng_odelllng approaches) along the drug discovery and development path all the way into the
erapeutic use.



http://www.ascpt.org/Knowledge-Center/Pharmacometrics-Forum/iDecide
https://www.ncbi.nlm.nih.gov/pubmed/?term=20648032
https://www.ncbi.nlm.nih.gov/pubmed/27069774
https://www.ncbi.nlm.nih.gov/pubmed/27069774
http://onlinelibrary.wiley.com/doi/10.1002/psp4.12049/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/psp4.12049/suppinfo
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Link to compendium and speaker notes will be shared through ASCPT
email burst

Including 3-5 case studies

Develop Version 2 of Compendium

Enhancing reputation of our QP community of practice
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Translational

Medicine

Key Question: How to assess cardiac safety in early oncology trials using optimal design and
M&S approach?

 Data: PK and ECG in a phase | study in patients ~ Study design
14 ECGs/individual

Wlth Cancer ) 12 PK samples Powerofd-etectionofadrugeffect
Putative PK/PD model: as a function of drug effectvalue
° 1 H o _ A
Mo-dellng /-Analy5|s Method: IfIM based oot (f)'[H ZQTAH.CO{f I D
optimal design for the computation of the 2412 J
expected power, then population PK/PD 0T, (1)= 0Ty, -(1+7-Ct)

1-p

modelling Optimal design I

* Results: Concentration-QTc relationship,

L e : :

gssessed‘takl.ng into account individual dosing Study conduct kP model goodness
information, individual PK parameters, and of fit plot
circadian variations Population PK/PD modelling

* Inference: Analysis outcome ultimately will o N

. PKPD ucture Qc'l.',:Fu:ithout'trsatment‘ B} : < o

have.to be compared to concentration range sl i A AT i
obtained at the recommended dose, inorderto @ o ¥ 4
cover the variability of concentrations in P | QO ndertrestmens

clinical routine use

uuuuuuuuuuu

Conclusions: The combined use of optimal design before the study and population PK/PD
analysis allows the assessment of the ability of the study design to inform on concentration-
QTc relationship, and the quantitative assessment of this relationship

PAGE 23 (2014) Abstr 3052 [www.page-meeting.org/?abstract=3052] | E @
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Translational

Medicine

Key Question: Can PBPK modelling (using in vitro inhibition constants) be used to predict
renal transporter-mediated DDI?

Data: PBPK model input parameters for a Servier drug (S 44121), ciprofloxacin, tenofovir and
probenecid, and clinical DDI study results

Modeling Method: PBPK models were created in Simcyp for S 44121,
ciprofloxacin, tenofovir and probenecid. Simulations were carried out, and
predictions were compared to observed data (i.e. concentrations from

for substrate forinhibitor
clinical DDI study). Cm T T ,mj

Model Model

Results: The PBPK model slightly underpredicted the extent of interaction verifcation verifcation
between S 44121 and probenecid when using the in vitro Ki value. The Q ¥
model correctly predicted that there would be no interaction between S —
44121 and tenofovir or ciprofloxacin. C mg

PBPK model PBPK model

Inference /Simulation / Extrapolation: The simulation showing that no DDI
was expected between S 44121 and tenofovir or ciprofloxacin means that a verifcation
clinical DDI study might have been avoided, if accepted by the regulatory

agency.

DDI prediction

Conclusions: Overall, the PBPK modelling approach gave a better prediction of the extent of
DDI than the static predictions based on inhibitor C,__, and IC.,, therefore this can be
considered a potentially valuable tool within drug development. More examples of this type

NMa

are nevertheless required before it can be used to potentially replace clinical studies.
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Translational

Medicine

Key Question: How can we predict optimal anti-TfR affinity for human brain penetration
and expected clinical activity of anti-TfR bispecific antibodies based on preclinical studies?

Model Structure Model calibration/validation Differentiation Potential
A: Systemic PK model i TFR1/BACEL () TfRS3/nBACEL (i) TfR52/nBACE1 Comparison between TfR bispecific and bivalent antibody
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@«Q@ & / Inference: The proposed modeling framework is capable of predicting antibody PK and CSF

— N \_/—__/ - PD for a wide range of brain-targeted antibody characteristics in nonhuman primates. The

\/____,J Ei workflow allows predictions for expected human response to anti-TfR bispecifics targeting
brain-targets at varied concentrations and turnover rates.

Conclusions: The described modeling and simulation framework could predict the profile of expected
human target neutralization for a specific antibody against a specific brain target. Thus, this modeling and
simulation framework can play a prospectively instrumental role in specifying criteria for designing optimal
clinical candidates and efficient clinical studies to enable faster development of this class of therapeutic
bispecific antibodies.

Kanodia JS and Gadkar K et. al. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the
Human Brain. CPT:PSP (2016) y@
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Translational

Medicine

Key Question: How to optimally select clinical anti-tuberculosis drug combination
regimens from preclinical studies using a translational pharmacometric approach?

Pre-clinical Disease Model Translational Factors Clinical Predictions
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Inference

* Closing the translational gap between preclinical and clinical development in TB drug
development.

Conclusions

* The presented translational pharmacometric approach predicted the (joint) dose response
for common TB drugs from pre-clinical exposure-response studies

* This allows forecasting of (combined) exposure response in TB to inform innovative phase
lla/b regimens and designs, in which drug effects cannot be studied in monotherapy

Authors: S.G. Wicha, O. Clewe, C. Chen, L. Tanneau, R.J. Svensson, U.S.H. Simonsson. Department of Pharmaceutical Biosciences, Uppsala University, F
Uppsala, Sweden. References: Wicha et al. ECCMID 2016; Clewe et al. JAC. 2016; Svensson et al. CPT:PSP 2016, Clewe et al. Eur J Clin Pharmacol 2015 @
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Translational

Medicine

Key Question: Is there are an integrated way to visualize biologics PK, PD, ADA & NAb data?
Background: Typically PK, PD, ADA and NAb data are summarized/plotted into different figures
and often the interpretability is lost as one has to toggle through different plots

Method: An integrated visualization using R along with RShiny makes the data integration
easier for decision making.

Typical Visualization Integrated Visualization
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Conclusions: Integrated visualization enabled efficient decision regarding the impact of ADA
& NAb data on PD and PK of a biologic molecule. This improved and informed project
decision making time

Acknowledgments: |. Bhattacharya, C. Banfield, C. Lepsy, K. Hung y@
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Translational

Medicine

Key Question: Can a meta-analysis help to optimize scopolamine challenge study design
to evaluate NCEs targeting cognition impairment?

Figure 1: Time course of DET (left). GML (right). Placebo data are presented in yellow. Scopolamine
data are presented in black (0.5 mg) and blue (0.8 mg). Solid lines represent median profiles.

Data

0 Clinical studies: five Phase |, placebo controlled studies were pooled for the analysis
of PK and PD data. 159 healthy volunteers receiving 0.5 or 0.8 mg scopolamine alone
or with 10 mg donepezil

S PD endpoints: Detection time (DET) and Groton Maze Learning (GML)

Scopolamine 0.5 vs 0.8 vs Flacebo

Scopolamine 0.5 vs 0.8 vs Flacebo
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m 15 20

02

1}
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GML (absolute change fom baseline)
a

DET (absolute change fom baseline)

02 00

S Large variability was observed in the response with different strength in signal across -
the available PD endpoints (Figure 1) I e
o Figure 2: Median observed and predicted profiles of DET (left), GML (right). Solid lines represent
MOdehng treatment arms receiving scopolamine only whereas dashed lines represent scopolamine + donepezil
arms_._EiIagI-(5 and grey :ine; reprhesent rglspedivgly ({;bls_served and ;;tredicte(ii_dalta ir:]sindi\«;dualj
- Both scopolamine and donepezil PK were described by a two-compartmental model predicted data in individuals receiing 0.8 ma scopolamine. Ty el A
with first order absorption and lag time iz B
8 .
. An indirect effect model with effect compartment accounting for the dissociation £: [
between PK and PD measurements described the PKPD relationship £ Z.
9 Scopolamine effect was assumed to be proportional to baseline; similarly donepezil is -
effect was assumed to be proportional to scopolamine %g ;@E'
8 T 7 & & w © 1 ° " ZFT 4 & & w1z 18
H H ime sinoe baseline vist (1) Time snce bassine visit ()
Results/Simulations _ e _ _ o
Flguret_?»: :]ET(Ieﬂl}an_d GMIa(rlght} ls|m_u|atethed|an_|p{roﬁI;as.Stohd ande:lalshed IlTes Eopresent
9 DET and GML time-courses were well described by the models developed (Figure 2) respectliely scapolamine and scopo amine * donepezil teatment arms. Yellow = placebo;
black/blue/light blue = 0.5/0.8/1.2 mg scopolamine
0 Median [95% CI] donepezil effect in attenuating the scopolamine-induced cognition = - £
impairment was estimated to be 27.4% [26.1-28.8] for DET and 42.9% [34.5-50.6] for = o £
GML = =8
9 Simulations show that 0.8 mg scopolamine, as compared to the commonly used 0.5 gz h
mg scopolamine, provides a 2-fold increase in the population signal with a direct =3 gﬂ
&% = [ Z 10 12

12
Time singe baseline (1)

Time singe baseline (1)

benefit on the relative PD response (Figure 3)
Conclusions: PKPD relationships of DET and GML were successfully characterized providing a
framework that allows optimization of scopolamine challenge studies

Bellanti et al. J Pharmacokinet Pharmacodyn (2016) 43:511-5122 M17 | E@
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Translational

Medicine

Key Question: How does the insulin PKPD relationship change as a function of glucose clamp target in
clinical studies to enable design of multi-glycemic clamp study and dose selection for comparator arm?

Data: Literature clinical studies Methods: Translation between HV and T1DM patients, and
between glycemic levels done by building a clinical comparator
— T T T r  Mmodel for regular human insulin PKPD data in clamp studies.
ND 15(58) 14 (53) s;;w ?0 53150 >2120 Results: Insulin CL saturable without PK differences HV/T1DM
TIDM  17(71)  15(36) 45 26 44 27 Insulin action is function of glycemic target. Insulin is less potent

in TIDM compared to HV combined with reduced maximum.

Clamp PKPD 'V'Odi" Diagram Translating from HV to TIDM Projecting PKPD at

synthesis
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Conclusions: A joint PKPD mechanistic model can describe and explain insulin PK and action during the
hyperinsulinemic clamp for TIDM and ND populations and varying glycemic levels. This model was used to
design the comparator arm for (multi) glycemic clamp studies in both healthy subjects and TIDM patients.

Fancourt et al. T12; Burroughs et al., W13. J Pharmacokinet Pharmacodyn (2015) 42:511-5107. y@
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Translational

medicine

Key Question: What are the (baseline biomarker) drivers of antitumor effect, once dosing
and exposure variability are accounted for?

* Data from 107 ovarian cancer patients V57l
— Dosi ds (alisertib & paclitaxel
osing records (aliserti paclitaxel) ) alisertib paclitaxel
— AAKSNP status N T
wn
—  tumor size (TS) assessments, = yes(l — GRI) o
— individual popPK parameters g
I_
o i ( ------- 3_-‘/&” Ll
MOde"ng Method Start of treatment End of treatment time
— Nonlinear mixed effects dose-exposure-antitumor effect
— Test AAK SNP status as covariate 1
0.9 Y
° Results 08t V&I
o7t
— SNP status of AAK (target of alisertib): significant covariate = 06| ]
- . v os| fs ]
* Simulations Los -'.'-———— ]
— Simulations predict VV genotype is 10-20% more likely to ﬁi I E il =
show a progression-free survival advantage of 0.1+ :
alisertib/paclitaxel combination over paclitaxel alone. 2 04 o6 o8 1 12 14 15 18

favors 40/60 ali/ptx combo + HR — favors 80 paclitaxel alone

Conclusions: Tumor kinetic modeling considering dosing and PK variability with baseline
biomarkers as covariates can provide more precise estimates of biomarker contribution to
observed variability in antitumor drug effects.

D. Bottino, K. Williams, H. Niu, A. Chakravarty, X. Zhou, J. Jung, M. Bargfrede, K. Venkatakrishan, ASCPT 2017 y@
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Translational

Medicine

Key Question: Given observed clinical toxicity and our preclinical understanding of
exposure-response, what tolerable dose pair will give optimal antitumor effect?

* Data:

— Combination (+ mono if available) exposure & toxicity data.

cell line zzz

—  Preclinical exposure & tumor growth data. 30

— Protein binding in mouse & man.

* Modeling / Analysis Method

— 2D logistic regression on free fraction exposure/tox data =
maximum tolerated exposure (MTE) curve

250

200

150

r Growth Rate InhiBiliGHIN

— Surface fit to preclinical free fraction exposure/effect data.

— Calculate effect along MTE curve = optimal exposure ratio e

— Convert exposure back to dose
* Results: in tested (blinded) combo, toxicity was
more synergistic than efficacy

50

Drug Y exposure (free fraction corrected)

0 1 2 3 4 5 ]
* Inference: optimal dose = drug X given as Drug X exposure (free fraction corrected)

monotherapy at MTD

Conclusions: This is a general methodology that can be applied to any early phase oncology
combination for which combo preclinical antitumor and clinical safety data are available.

M Patel, E Kadakia, J Zhou, C Patel, K Venkatakrishnan, A Chakravarty, D Bottino. ACOP 2016. J Pharmacokinet Pharmacodyn (2016) 43:511?
5122 T46 @
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Drug Development

Decision-making

Key Question: What is the optimal dosing regimen to be used in phase 3?

Data - Data from five phase /Il
studies was integrated across
different doses, regimens, and
routes of administration

Model - Population-PK/PD
models were incrementally built,
evaluated, and updated with
accruing data

Results - Phase 3 studies
confirmed the predicted efficacy
for the 150mg and 300mg
regimens. After phase 2 this
model allowed to select
optimized regimens based on
predicted response
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Conclusions: Model-based integration of phase /Il data allowed the selection of two dosing
regimens for phase Ill which had not be tested previously. Phase Il confirmed the positive
benefit-risk for those regimens and the regimens were approved.

[1] Sander et al. Model-based development of the secukinumab dosing regimen [..]. PAGE meeting 2016.

[2] Langley et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med. (2014) 371(4):326-38.

D&
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Drug Development

Decision-making

Key Question: How to predict an optimal administration schedule early in clinical development?
e \

PK/PD model

e Data: Concentration-time profiles for 49 patients, PK model -
after oral and IV administration (qd, bid, tid, 6 i_..'i._.g - \
. o l
dlffgrent weekly afjm. schedules) PIathgt t|m.e &\0"0"0 O
profiles for 35 patients, after oral administration
(bid, tid, 4 administration schedules) \_Friberg etal, 2002 e/
* Modeling / Analysis Method: Sequential PK/PD / ?jlf‘l”ffeffniiffﬂ?ifi?ffﬁifﬁiﬁﬁ\
modeling 8 Ty
4on/30ff*3
*  Results: A semi-mechanistic PK/PD model was = Saonrsbat , Solid boxes:
. . = o treatment
able to describe the available data across £, ——.
administration schedules and doses 5
. . L. R Empty boxes:
* Simulation: For a similar exposure over a 21-days = recovery
N periods

treatment cycle, it was shown that the
administration schedule 4 days on treatment and 3 ; T
days off treatment, every week, was the safest k Time (d) /

Conclusions: This work shows a clinical application of early PK and PKPD modeling of a new HDACi as an
influential development tool for the selection of an optimized administration schedule. A wide range of
simulation conditions were evaluated, and an optimized administration schedule was determined. This
treatment schedule was clinically evaluated after a protocol amendment and a new MTD was defined
with a 30% higher dose intensity.

Chalret du Rieu et al, Pharm Res, 2013 (DOI 10.1007/s11095-013-1089-1) | E@
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Drug Development

Decision-making

Key Question: What is the optimal dose range for a Ph2B study and does the compound
have sufficient differential potential to DPPIVs?

Data: Results (Dose Range): Simulations (differentiation):
SRD (PK)  MRD (PK)  POC (PK, FPG) * Robust glucose- and HbAlc-lowering  * A potential clinically efficacious
effects are predicted at Week 12 at dose of 300 mg had the highest
doses of 150 mg and greater probability for a superior
N * At doses of >250-300 mg, the predicted glycemic efficacy in comparison
Modeling: " o ; to DPPIV inhibit i
e Anindirect PK-EPG model additional reduction in glycemic 0 InhibItors retaining an
N Indirect response Fi- mode response is attenuated adequate safety margin
was based on the pop PK model and
FPG data from the clinical POC study. Predicted Week 12 placebo-adjusted
* A published FPG-HbA1c relationship? reductions from baseline in HbAlc Probability of a dose of MK-8666 to
_ ool demonstrate a placebo- and baseline-
was used to extrapolate MK-8666 adjusted mean difference of 20.3% in A1C
FPG response to 12-week HbAlc at Week 12, compared with a DPP-4
=3 M atobalded Inhibitor

Mean Delta »= 0.3%
100+

-1.00(-0.80,-1.23)

\'fa.
-1.12(-0.88,-1.36) 754 s 754
Central PK Glucose iG HbA1c Kaie -1.18(-0.92,-1.47)
——% compt compt. compt. "
Peripheral 4’\&/1; s 24
L 'S
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3, - & & = o F o
Dose(mg)

Week12 placebo adjusted
change from baseline HbA1c (%)

Success (Percentage of trials)

Probs

Stimulation of the glucoss dispasal rate (Kay, G = K~ fan 1+
Dose (mg)

Conclusions: Integration of modeling and simulation with team strategy allowed extrapolation of 2-week
proof-of-concept study results to 12-week HbA1c response. The predicted dose-HbA1c curve facilitated
decisions on dose selection with a differentiation potential for a proposed Phase Illb study.

Vaddady et al., ] Pharmacokinet Pharmacodyn (2016) 43:511-S122 M46; [1] Naik et al., CPT:PSP 2013;2:e22 y@
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Drug Development

Decision-making

Key Question: What is the optimal dose of Naloxegol and best trial design for clinical
phase lll trial to confirm efficacy and safety?

Dose-response relationship Simulated distribution of
developed with phase 2b data mean difference from placebo

25 mg (red) and 37.5 mg (blue)

80

Mean %Responders

IR o

| i
| |
| i
\ i

O 20 40 B0 80 100

a 20 40 a0

I T T T 1
0 10 20 30 40 50 . .
Difference from Placebo (Proporticns % Responders)
Dose (mg)

Methods: A longitudinal mixed-effects negative binomial model was developed in 185 patients from
phase 2b study to characterize the relationship between naloxegol dose and the weekly probability of
being a responder. In addition, a model for the time to study discontinuation (dropout) was also
developed, and the two models were used together to predict responder rate in the study.

Conclusions:

The exposure-response analysis at Phase Il demonstrated the 25 mg was an effective dose
with updated primary endpoint. Model-based simulations suggested that doses of 12.5 mg
and higher would provide a promising clinical benefit over placebo.

Al-Huniti et al CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 359—-366 y@
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Drug Development

Decision-making

Key Question: Can we integrate target, physiology and disease in a comprehensive manner to
predict efficacy in Type 2 Diabetes PoC Trial from healthy volunteers target engagement data?

=

Data — Published data on other SGLT2i compounds, target - .

engagement PK/PD for lead selection, physiologic understanding of : N - B I Q
mechanism of action were used in the development and application 5 _ ' ; =

of systems pharmacology model. e Q* oo

Modeling / Analysis Method - Physiologically based representation of e N

competitive SGLT2 inhibition in PhysioLab to account for the effect on ==

glucose reabsorption in the proximal tubule, tuned with literature o o 2w w0 e

Ertugliflozin Dose (mg)

data for PK and UGE for healthy and T2DM subjects.

Results — Validated model was tuned with PK and biomarker response
in healthy subjects FIH (single dose) and was able to predict efficacy
as observed in a 12-week Ph 2b diabetes trial.

00

-02
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06

Inference - The model provided a quantitative link between the
mechanism of action biomarker (UGE) and long term end-points
(Hb1AC and WT) across different populations (healthy & patients).

Flacebo Adjusted Change in HoA1c%
.08

-10

T T
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Conclusions: The model successfully predicted efficacy in T2DM subjects from observed FIH
study data, results of this effort helped complete FIH to end of Phase 2 within 14 months.

Milligan, P. A., et al. "Model-based drug development: a rational approach to efficiently accelerate drug development." CTP 93.6 (2013). F@
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Drug Development

Decision-making

Key Question: For a novel PDE5i for chronic kidney disease (CKD), for this mechanism, how will
phase Il outcomes translate to registration endpoints using a Systems Pharmacology Model?

Systems Model Representation of Key Physiology Constrain Model Against Phase Il data Use revised model to predict potential
(in collaboration with Institute for Systems Biology, phase lll endpoints.
Moscow).

Model Prediction: Combined Endpoints

250

MC and ECM Volume |

| Mes. Cell Apop |—>| es. Cells

%

Glomeru lar Pressure |—>| Podocyte Apoptosis |

Glomerular Volume |

Mean UACR / Mean Placebo

MMMMMM

Time until Endpoint (months)

Placebo PDESI Placebo PDESI

Time (weeks)

Increases, Jac*vates, Jor)posi*vely)correlate 40 % Reduction in eGFR or ESRD 57 % Reduction in eGFR or ESRD

) )
Decreases, )inhibits,Jor)nega* vely)correlated)

Inference

* Data driven approaches failed to establish a relationship betweebn UACR and Phase Il endpoints due
to high variability. Systems modeling approach predicts modest magnitude of improvement in disease,
and indicates which endpoint is preferential.

Conclusions: By application of known physiology, and incorporation of diverse data sets the
systems modeling added significant value beyond traditional meta-analytical approaches

Allen R, Rieger T and Musante C. [v1; not peer reviewed]. F1000Research 2016, 5:92 (poster) (doi: 10.7490/f1000research.1111260.1) y
Acknowledgements: Gianluca Nucci, Danny Chen, Institute for Systems Biology Moscow @
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Drug Development

Decision-making

Key Question: Can we use a mechanistic model to project efficacy for a treatment for fatty liver
disease given that early clinical studies cannot directly measure changes in liver fat (L.TGs)?

Systems Pharmacology Calibration Using Projected Change in Liver Fat
Model (NAFLDsym™) Pre-clinical Data in a Phase Il Clinical Study
81'5 Acute (3d) . 10
5 0
Eo'z -10
-20
81.5 o
< 1 ~-30
o -
T 05 §-40
o]
w0 Sims. Choi -50
1.5 -
£ -6°
:05 -70 4050
30 50 Meant95%PI
w0 0 25 50 75

Total DGAT Inhib.

Conclusions: The model quantified both the therapeutic potential for the novel treatment
and showed some of the variability in response. In future applications, the model can be used
for testing questions about clinical design (e.g., inclusion/exclusion, duration, dose).

http://www.dilisymservices.com; Choi et al. JBC. 2007; Acknowledgements: Cynthia Musante, Richard Allen, Jeffery Pfefferkorn,
Arthur Bergman, Greg Tesz, Russell Miller, Jeff Chabot, Bob Dullea, Kendra Bence (Pfizer) Y@
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Drug Development

Decision-making

Key Question: Can mathematical modeling determine the extent of hepatocyte loss and
effect on serum bilirubin in 2 subjects who met Hy’s Law Criteria in clinical trials of GGF2
although peak ALT was <300 U/L?

Estimated Cell Loss with 100% Apoptosis .
w0 Inference:

Serious Liver Injury

:: | / v -—-//_/ ALT elevations in GGF2-treated subjects are

comparable to those observed with
heparins, which do not cause clinically
significant liver injury when taken as

50 4

40 -

cero Estimated Liver Loss (%)

* ek directed, and where hepatocyte loss is
° ---?;db” predicted to be <16% in healthy volunteers.
“1 : Clinically serious liver injury (>60%
1@ S & 05:.3 & & & S

> estimated hepatocyte loss) is possible-likely

R g when peak ALT >1200-1800 U/L.
Observed peak ALT range (U/L)

Conclusions: Traditional and novel biomarker analyses together with DILIsym analysis suggest
that the 2 subjects with simultaneous elevations in serum aminotransferases and total
bilirubin observed in the Phase 1 GGF2 clinical trials should not be considered typical Hy’s
Law Cases

Lenihan et al. ] Am Coll Cardiol Basic Trans Science. 2016; Howell et al. CPT Pharmacomet. Syst. Pharmacol. 2014: 3, e98. y@
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Regulatory

Decision-making

* Key Question: What is the efficacious dose and schedule of Pembrolizumab? Are
intrinsic/extrinsic factors impacting dose/schedule for subpopulation?

. . r :
* Data: Preclinical and early Elassaiss-Schaap et al
clinical PK and tumor-size

* Modeling Approach:
Translational PK-tumor-size and
early clinical PK (TMDD)
analysis guided selection of 2
mg/kg in later studies

I
I
I
L

Initial dose setting
A

* Results: Exposure vs tumor-size
as well as safety showed flat
relationship between 2 and 10
mg/kg demonstrating that the

dose of 2 mg/kg Q3W is at the  |nference: modeling and simulations demonstrated flat
plateau of maximal response.  dose/exposure-response over 2-10 mg/kg

—

Registration and labeling

Conclusions: Translational, Clinical PK and Exposure-Response Analyses demonstrated that the lowest
dose of pembrolizumab achieving a maximal response would be 2 mg/kg Q3W. This dose and regimen
was subsequently approved for patients with advanced melanoma

CPT-PSP 2017: de Greef, R. et al., Pembrolizumab: Role of Modeling and Simulation in Bringing a Novel Immunotherapy to Patients With y
Melanoma. 6(1):5-7; Lindauer et al, 6(1):11-20; Elassaiss-Schaap et al., 6(1):21-28; Chatterjee et al., 6(1):29-39; Ahamadi et al., 6(1):49-57 @
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Regulatory

Decision-making

Key Question: Can quantitative clinical pharmacology approaches be used to switch body
weight based dosing (3 mg/kg Q2W) to flat dose (240 mg Q2W) of nivolumab?

PK by Body Weight Safety Prediction Efficacy Prediction

MEL + NSCLC + RCC
Medianmm=s 5ih/95th Percentie MEL + NSCLC + RCC Covariate Hazard Ratio
i . Continuous = Reference (P05 — P95) 95% CI
3 llk Q2w } I 240 I Q2w Covariate Hazard Ratio NSQ NSCLC Cavg1 (3 mgkg), pg/mL 09(71 (o ;2 1)12)
Vi il . E v 1
Moy o L Continuous = Reference (P05 - P95) (95% Cl) 25_7(1%_3L1_7)g o) Ho 1.03 (0.896, 1.18)
j . . ' : NSQ NSCLC Cavg1 (240 mg), pug/mL 0.971(0.839, 1.12)
£ 95th Percentile Cavg1at 10 mg/kg Q2W: | 95th Percentile Cavg1 at 10 mghkg Q2W: Cavgl (3 mglkg), ug/mL 1.04 (0.958, 1.13) 28.1(17.9-44 3) 1.03 (0.892, 1.19)
) 120 pg/mL 120 pg/mL 26.7 (17.3417) —Eg 0.962 (0.888, 1.04) SQ NSCLC Cavg1 (3 mglkg), pg/mL 0.918(0.779, 1.08)
é 100 26.7(17.341.7) 1.09 (0.927, 1.28)
- i 3 i . SQ NSCLC Cavg1 (240 mg), pg/mL 0.916 (0.775, 1.08
g, Median Ca\;g‘5 1531 1[0 Tgﬁkg Q2W: Median Ca»;g6 1531 110 Tgt’kg Q2w: 2371‘(5177;“ 3 g). Hg s (io_gzi 1_29))
] -2 pg/mi -9 Hg/m
MEL Cavg1 (3 mg/kg). pg/mL 1.11 (0997, 1.24]
© Cavg? (240 mg), pgimL _ER— 1mosin ) bom 063 (0873, 1)
@ 281 (17'9“44-3) 0.96 (0.883‘ 1-04) MEL Cavg1 (240 mg), pg/mL 1.12 (0.997, 1.26)
E 501 28.1(17.9-44 3) 0.929 (0.863, 1)
% ___.,.--"' RCC Cavg1 (3 mg/kg), ug/mL 1.08 (0.998, 1.18)
5 g 26.7 (17.341.7) 0.951 (0.903, 1)
'
Z .’-ﬁ/— — RCC Cavg1 (240 mg), pgimL 148028 110
08 10 12 28.1(17.944.3) I T } T . . g 3
) ' . Hazard Ratio Relative to Reference Value 06 AD' 8 _1 0 12 18
50 100 150 Hazard Ratio Relative to Reference Value
. = Estimate (95% CI): B Estimate (95% CI): Estimate Continuous I . S
BOdy WEIght ‘kg) Continuous (P95) Continuous (P05) Values > Reference - a‘m:ﬁiﬁgs(:gg;)' = Ei:w:ﬁu(:s(éog;)' ‘E:flmi}f gﬁ:&ﬁf

* Based on population pharmacokinetic modeling, established flat exposure-response relationships for
efficacy and safety, and clinical safety, the benefit-risk profile of nivolumab 240 mg Q2W was
comparable to 3 mg/kg Q2W.

Conclusions

* The quantitative clinical pharmacology approach provided evidence for regulatory decision-making on
dose modification, obviating the need for an independent clinical study.

Zhao X, Suryawanshi S, Hruska M, Feng Y, Wang X, Shen J, McHenry B, Waxman I, Achanta A, Bello A, Roy A, Agrawal S. 2016 European Society of Medical y
Oncology. Annals of Oncology (2016) 27 (6): 359-378 @
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Regulatory

Decision-making

Key Question: Can QP paradigm support the conclusion of similar efficacy and safety of a
once daily extended release (XR) formulation of tofacitinib as that of the approved
immediate release (IR) formulation, without confirmatory evidence from a Phase Ill study?

* Data: Clinical (Phase Il dose-ranging studies of piodel predicted Theoretical Mediator
the IR formulation) and nonclinical (murine R 5 Mo BID —— X% 11 o QD
models of efficacy). 60 - 20 -

* Modeling: Series of nonlinear mixed effect
models built using validated clinical endpoints.

. Results:

— AUC (or C,) was the most relevant PK predictor of
tofacitinib efficacy.

50

40

30 15 4

— Consistent with tofacitinib’s indirect mechanism of =0

Plasma concentration (ng/mL)
Mediator concentration (ng/mL)

action, fluctuations in concentration-time profile over 1o /

the course of a dosing interval were not expected to be

clinically meaningful and therefore C.,, differences ol == o b
between the two formulations were not important to © 4 8 12 16 20 24 0 4 8 12 16 20 24
the efficacy of tofacitinib, given the AUC equivalence. ML e o X W) LAl s e e W)

* Inference: Innovative strategy where PK/PD based analyses in conjunction with PK data formed the basis of
benefit/risk assessment of the XR formulation. On the basis of E-R analyses and PK data showing equivalence of
AUC between the formulations, tofacitinib XR was approved by US FDA in February 2016.

Conclusions: The analyses illustrate the potential of robust dose-response studies and E-R
relationships to facilitate efficient drug development of alternate formulations and provide
sufficient evidence to obviate the need of Phase 3 trials

Lamba M et al, CPT DOI: 10.1002/cpt.576; FDA. Guidance for industry. Providing clinical evidence of effectiveness for human drug and
biological products. http://www.fda.qov/Requlatoryinformation/Guidances/default.htm. F@
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Regulatory

Decision-making

Key Question: Does lowering the dose from 25 to 12.5 mg naloxegol provide benefit in
patients with opioid-induced constipation?

Data: two identical phase lll studies were conducted and the
response rates were statistically significantly higher with 25 mg
of naloxegol than with placebo for both studies, but the 12.5 mg

Observed and population mean predicted
responder rates

of naloxegol was only found to be statistically effective (a=0.05, Observed Population mean
p=0.202 and p=0.015) in one of the phase 3 trials Treatment responder predicted responder

group rate, % (90% Cl) rate, % (90% PI)

Daily spontaneous bowel movements Dlacebio 295 (259-331)  32.9 (28.7-37.5)

il TR Naloxegol 12.5 mg 38.1 (34.3-41.9)  42.7 (36.5-47.2)

08
08

Naloxegol25 mg 41.9 (38.1-45.8)  43.0 (36.7—46.9)

°
B e (e

T T T T T T
=20 0 20 40 60 80

: S I

00 04
0o 04

T T T T T
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Spontaneous Bowel Movements per Day
Spontaneous Bowel Movements per Day

) D—————yy Methods: Exposure-efficacy model integrating dropouts was developed
§ suey=s.posestzsmg 3 Study =5, Dose =25 mg using spontaneous bowel movements (SBM) data from 1,331 patients in
pl o ] Q . two phase 3 pivotal trials. Number of SBMs was characterized by a
§ ][RR 5 -] j"f"‘ - longitudinal non-linear mixed-effects logistic regression dose-response
§ s - g 2] model. Dropout (incidence of diary entry discontinuation) was described
% £

-20 0 2‘0 ‘IO 6'0 8‘0 -20 ; 2‘0 4’0 6‘0 8‘0 by a ti me_to_eve nt model'

Time Since First Randomized Dose (Days) Time Since First Randomized Dose (Days)

Conclusions: Exposure-response analysis at phase Ill demonstrated the 12.5 mg dose could provide a
clinical benefit over placebo with comparable efficacy to the 25 mg dose. The conclusion was accepted by
regulatory and presented in the naloxegol’s package insert

Al-Huniti et al CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 359—-366 y@
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Regulatory

Decision-making

Key Question: Can modeling guide switching from body surface area-based to fixed dosing
without conducting a standalone study to compare fixed dosing vs BSA based dosing?

Data/Method: Data from 226 adult patients with multiple myeloma, lymphoma, or solid tumors
in four phase 1 studies was analyzed using NONMEM version 7.2

Results (N=226) Simulations (N=1000) Simulations (N=1000)
A 2. ? 10000 . P=0.42 A —
10000
— s < g 2 8000 |
v £ 6000 | t ==
- g E 6000 | = —
- I < — —
= § 4000 § oo L - ——
2000 | szl
=2 1 1 1 1 1 1 1 i X <O o %%’,
l.41.61.82.02.22.42.6 °'l'0 .|.s - = - = ot
BSA l:m]'} ' ‘ BSA (mz') ' Bsdt-::;d ::s(ier:jg

Inference: median AUCs were similar after BSA-based and fixed oral dosing

Conclusions: Clinical development switched posology from BSA-based to fixed dosing,
simplifying capsule strength manufacture and dosing in global clinical trials. Fixed dose of 4
mg was subsequently used in phase-3 TOURMALINE MM1 study that formed basis for
approval of ninlaro (Ixazomib) by FDA and EMA.

Gupta N, Zhao Y, Hui AM, Esseltine DL, Venkatakrishnan K. Br J Clin Pharmacol.79(5):789-800 (2015) y@
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Regulatory

Decision-making

Key Question: What are the underlying mechanisms of observed liver enzyme elevations
for solithromycin and other macrolides?

DILIsym® Mechanism-Based Modeling .. Clinical Data and Simulation Results
DiLIsym® Input Panel £ W ovserves
PK data (Oxidative stress, mitochondrial dysfunction, = Bl simulated
bile acid transporter inhibition) N
[ Drug Metabolism and Distribution ] U"m";:::::glﬁzamve ':
[ BN N <
") s
Lipotoxicity ] [Reactlve Oxvgen Species Ny
Soli (PO) Soli(IV/PO) Ery Clari Teli
Mltochandna Dysfunction
[ Intracellular Bile Acids ] l and Toxncntx I compound H Ery Clari Teli
' \»[ Hepatocyte Life Cycle | Predicted Hy’s Law cases 0% 0% 0% 0%
Predominant Mechanism ETCi BAi ETCi -
DILIsym® [ Biomarkers ] [ Innate Immune Response ]

Minor Mechanism BAiI 0sS BAi BAi
Population Variability (SimPops) i T STt PO TS T R A o o oy O R
Inference: Mechanisms for ALT elevations vary among macrolides and solithromycin is

similar to clarithromycin in this regard

Conclusions: Quantitative systems toxicology modeling reasonably predicted the incidence
of ALT elevations for different macrolides and characterized underlying mechanisms. The
simulation results were presented to the FDA Advisory Committee for solithromycin

This research was supported by Cempra. y@
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Regulatory

Decision-making

Key Question: Can an integrated non-clinical and clinical risk assessment on the QTc
interval for Ixazomib obviate the need for a dedicated clinical QTc study?

C Pharmzacokinetic—matched triplicate electrocardiograms (ECGs) were collected in four clinical phase | studies of intravenous (0.125-3.11
mg/m°, N=125, solid tumors/lymphoma) or oral (0.24-3.95 mg/m", N=120, multiple myeloma) ixazomib.

O The relationship between ixazomib plasma concentration and heart-rate (HR) corrected QT using Fridericia (QTcF) or Population (QTcP)
methods was analyzed using linear mixed-effects models with fixed effects for day and time.

Change from Baseline QTcF vs Ixazomib Plasma Concentration Change from Baseline QTcP vs Ixazomib Plasma Concentration
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c At an ixazomib plasma concentration of 200 ng/mL (approximately four times the geometric mean Cmax at the 4 mg dose), the upper
limits of the 90 % Cls for the mean AQTcF and mean AQTcP were well below 5 ms (the regulatory threshold as per ICH E14 guidelines)

Conclusions: Ixazomib has no clinically meaningful effects on QTc or HR. Integrating preclinical data and concentration—
QTc modeling of phase 1 data was accepted in lieu of a dedicated clinical QTc study. Ixazomib (ninlaro) was approved by
FDA on Nov 20, 2015 and results from this analysis were included in the USPI of Ixazomib.

Gupta N, Huh Y, Hutmacher MM, Ottinger S, Hui AM, Venkatakrishnan K. Cancer Chemother Pharmacol. 2015 Sep;76(3):507-16. doi:
10.1007/s00280-015-2815-7 F@
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Regulatory

Decision-making

Key Question: Which drug interactions and demographic factor effects are clinically relevant
and require dose adjustments or contraindications in the drug label?

Data: ~2000 Patient Data + ~25 Phase | Drug Interaction or Sub-population Studies

o

Inadequate Therapeutic Window | Unacceptable
efficacy <€—; A \ > toxicity
100 —— - — - mE e . . 40 E
mm——— [5)
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o _% g (label contra-indication) é‘ a[o = Tt ALTIRST St EvantFate ()
| e ‘ o L 10 = P .
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i oo 20 -] 8
Seom NiEA R B WY = high weight -
o Black naw o J
PK/SVR Model 0 - - a

1 10 i - i JL
Grazoprevir Exposure f; ------ e o
(Steady State AUC241 uM*hr) Fold Change over GZR AUCO-24 at 100 mg in the Reference Population

Inference: Most drug interactions and demographic factors that effect drug exposure resulted in
exposures within the therapeutic window, and therefore not clinically relevant.

Conclusions: PK/PD analyses for safety and efficacy provided an integrated understanding of
exposure-response to establish the therapeutic bounds. Despite several drug interactions and
demographic effects, the therapeutic bounds demonstrated that few effects were clinically
relevant. The drug label had limited contraindications for drug interactions and demographics.

Caro, et. al. (2016, December). Application of Pharmacometrics for New HCV Drug Development - Ethnic Differences in PK. y
Presented at The Japanese Society of Clinical Pharmacology and Therapeutics, Yonago, Japan. @
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Regulatory

Decision-making

Key Question: How should naloxegol be prescribed to avoid potential drug-drug interactions?

PBPK development > Verification - Prediction
Developed with in vitro/in Verified with clinical DDI Predicted for untested
vivo information studies clinical DDI cases
Method: Full PBPK models were developed to ';'I‘:"djzm ”lrf:_é;i
predict the drug-drug interaction (DDI) potential for  ....cmemens | e
n a onegOI . Diltiazem Predicted C::Jaé :
Quinidine Observed Cmax —
AUC —
. . Quinidine Predicted Cﬂjaé :
Results: Based on the simulations, weak CYP3A Veraparmil Predicted om
AUC —
inhibitors are expected to have minimal impact on Cimetiine Predictes Cax - ‘
naloxegol exposure in routine clinical use, whereas ;Obd‘(}uc 04225 |
Ifampin serve max — | . } } _95}_5_9:\_(?9_9_[1[
moderate CYP3A inducers may reduce naloxegol tompin raditos omme | w5 ||| Vercalen
AUC molopal (|0 R
exposure by 50%. . 1 3 o

Ratio with 90% Confidence Interval

Conclusions: In combination with clinical drug-drug interaction results, the PBPK model
predicted results provided comprehensive dosage recommendations for naloxegol in the
package insert.

Zhou et al CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 250-257 y@
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Therapeutic Use &

Special Populations

Key Question: How to determine the starting dose in children suffering from chronic
heart failure?

* Data: PBPK model qualified in adults.

* Modeling / Analysis Method : Plasma concentration-time profiles of ivabradine were simulated in
each age class (i.e. 6-12 months, 1-3 years, and 3-18 years) at SS after repeated ivabradine oral
administrations of 0.1 mg/kg b.i.d. using the PBPK model.

* Results 1000 g
-
= 6-12 months mg/kg _
- S P O 1 3veas | meke | o |
08 e (solid) and 90% CI 1-3 years mg/kg

. (dotted) AUC in adults 3-18 years
7 ey me/ke
== | . <40 kg
B ok 3-18 years
e 8 mg
6-12 months 1-3 years 3-18 years >40 kg

* Inference :The criterion for selecting the doses was to achieve the same ivabradine exposure as in
adult (based on the initial assumption that the PK/PD relationship is similar between children and
adults).

(ng*h/mL)

AUC24_SS
&
|

Conclusions: This work emphasizes the importance of modeling and simulation for internal
decision-making such as the design of clinical studies in pediatric populations. With this work
it was possible to determine the starting dose in children and to define a lower dose in
younger children since they presented a higher exposure compared to adults

Peigné et al,. ] Pharmacokinet Pharmacodyn. 2016 Feb;43(1):13-27. doi: 10.1007/s10928-015-9451-z. | E@
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Therapeutic Use &

Special Populations

Key Question: How to address the dramatic increase of clearance due to UGT-1A1
maturation in a 6-week dosing regimen for neonates?

* Data - Limited PK data of 6 neonates C AUC,,, (QD dosing) and AUC, ,, (BID) profiles for a typical neonate

trough?

only, in combination with infant PK during a 6-week raltegravir dosing regimen
.« . . 10000 7 ------meee-e- AUC24 90 [uM.hr] >
data, were sufficient to describe o 2. S
N _ AUC12 45 [uM.hr 50
UGT‘lAl maturatiOn \oo—lyo ........................................................................................... WMbd 0 §_

* A 6-week dosing regimen was 1000 -
designed accounting for efficacy and
safety PK criteria. Two dose regimen

e Qerived Auc : 20
el Con

500

RAL [nM]

trollgh

changes are needed to account for 0 oy T
the dramatic changes of raltegravir 5
clearance

* Result - The regimen was applied in . . : : ; ; .
0 7 14 21 28 35 42

a second cohort of the study and TIVE g
shown to be adequate

Conclusions: The dramatic increase in raltegravir clearance as the result of UGT-1A1 enzyme
activity in neonates requires 2 dose changes over the first 6 weeks of life to meet efficacy and
safety PK criteria.

Lommerse J, Clarke D, Chain A, et al. Raltegravir PK in Neonates — An Adaptive Trial Design to Define an Appropriate Regimen for
Neonates from Birth to Six Weeks of Age. Presented at: ACoP 2016. Seattle, USA. J PKPD (2016) 43:511-S122 T33 Y@
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Therapeutic Use &

Special Populations

Key Question: Which doses of Eslicarbazepine Acetate (ESL) provide exposures in 4-17 y
patients with POS that are similar to those determined to be safe and effective in adult
patients for ESL adjunct therapy or monotherapy?

Model-based strategy

PPK models in
adult patients for
adjuncttherapy or
monotherapy

PPK maodel in
patients aged
21017 years

h h

Simulations of adjunct therapy and monotherapy
Find dose ranges providing exposures
matching those of reference adult doses

Inference: Based upon the similarity of POS in pediatric patients aged >4 y and adults[1],

epine [
Cmin at steady state (pg/mL)
M
g

Target matched exposures

= Cmax for 1200 mg
aduilt dosing
1200,
8 Adult 1200 mg
Adult 800 mg

Adult 400 mg

a

30 40 50 70
Weight (kg)

Proposed adjunct therapy or monotherapy

dose by body weight range

Body Titration Maintenance
Weight Dose Dose

(mg/day) (mg/day)

<11 kg 200 300 to 400
11to 21 kg | 200 300 to 500
22to 31 kg | 300 400 to 700
32to 38 kg | 300 600 to 800
>38 kg 400 800 to 1200

pediatric ESL doses could be extrapolated from adult exposures using model-based

simulation [2].

Conclusions: Extrapolation obviated the need to conduct a US-based clinical trial in pediatric
patients aged > 4 y. Benefits of this strategy are to reduce the number of pediatric patients
exposed to clinical trials and to allow for earlier availability of ESL for clinical use in pediatric

patients.

[1] US FDA. FDA update: anti-epileptic drug efficacy in adults can be extrapolated to pediatric patients. April 6, 2016. AAP News.
[2] Ludwig E, Bihorel S, Fiedler-Kelly J. Addendum Report No. COG008041/2016/ESLIPEDSADD. January 2017. Cognigen Corporation

D&
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Therapeutic Use &

Special Populations

Key Question: What is the optimal study design to determine a clinically relevant drug-drug
interaction of different azole anti-fungal drugs on vincristine pharmacokinetic in pediatric

oncology patients

* Rationale: Co-administration of azole anti-fungals and vincristine anti-cancer therapy in
pediatric oncology patients is associated with increased toxicity. A clinical study was planned
to study the effect of azole-induced inhibition of CYP3A4. However, study designs were
associated with a risk for drop-out and missing samples

* Data - Adult population PK model and pediatric growth curves were utilized.

* Method: Clinical trial simulations using mixed effect models & D-optimal design

* Results: Trial simulations with optimized PK | oo )
sampling design, and systematic s T
assessment of dropout and missing PK 3 ,,/’ i
samples were comprehensively assessed. A | i.::;;;_;;;},_;‘ﬂé;%_&,&m«swﬂ““‘d‘ﬁ“""‘“”m” |
study design with >38 patients per drug- . s gEg § & 3 3
condition could detect a clinically relevant L .
effect of >40% inhibition of clearance sosbn i A

Conclusions: Clinical trial simulation and optimal design allowed identification of a feasible
clinical study design that could detect clinically relevant effects of azoles on vincristine

pharmacokinetics.

Van Hasselt et al. Pediatr Blood Cancer. 2014 Dec;61(12):2223-9. F@
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Therapeutic Use &

Special Populations

Key Question: How can bedaquiline (BDQ) safely be co-administered with ritonavir-
boosted lopinavir (LPV/r)?

Data Inference and Simulation
Concentrations of BDQ - Almost 3-fold BDQ increases in exposures during chronic treatment
after single doses in a with LPV/r are expected, the safety of such exposures is unknown
healthy volunteer - A 25% dose reduction in the loading phase and a 50% reduction in
drug-drug interaction the continuation phase are predicted to normalize the exposure
study with LPV/r

Bedaquiline
Analysis Method = ol /] Regimen
LPV/r’s effect on BDQ 2 o ; bbb bt P | = Sundard
pharmacokinetics was 2  pporor D ILELL | o Sl
assessed by nonlinear “’“‘”“(.} 1 . ] : | e Adsted + LoV
mixed-effects modeling Week

Conclusions: A dose reduction of bedaquiline is needed to mitigate the drug-drug interaction
with ritonavir-boosted lopinavir. For drugs with pharmacokinetic properties preventing (close
to) full PK curves from being captured, non-compartmental analysis under-predicts the
impact of drug-drug interactions, and model-based analysis is necessary.

EM Svensson et al., Antimicrobial agents and chemotherapy, 2014, 58 (11), 6406-6412 y@
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Therapeutic Use &

Special Populations

Key Question: Is there a need to optimize the dose in the patients who have lower T-DM1
exposure at approved dose (3.6 mg/kg q3w)?

K-M Plot by exposure quartile K-M Plot by exposure quartile HR of OS and PFS for Patients at
EMILIA (Phase Ill) TH3RESA (Phase Ill) Q1 (the lowest exposure quartile)
§ . - [ ] Unad]ust.ﬂl
20- ® Cox

@ Case-matching analysis

80
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Inference: K-M plots of OS and PFS (not shown) by model-predicted Cycle 1 C,.. quartiles illustrate an
apparent E-R relationship between exposure and survival outcomes. However, hazard ratios for OS and
PFS for T-DM1—-treated patients in the lowest exposure quartile (Q1) vs. active control were <1 after
adjusting for baseline risk factors with Cox proportional-hazards models and case matching analysis.

Conclusions: Quantitative analysis that included risk factors helped us understand our data and address
the potential need for a dose optimization study in patients with low exposure. The comprehensive ER
analyses further demonstrated that the approved T-DM1 dose (3.6 mg/kg q3w) has a positive benefit-
risk profile over active control, even for patients with low T-DM1 exposure, thus a dose optimization
study in this patient subgroup may not be warranted.

Chen et al, Th3RESA ER, SABCS, 2016; Wang et al, EMILIA ER, ASCO, 2013 y@
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Therapeutic Use &

Special Populations

Key Question: What are the primary sources of the in part large interindividual variability in response to
clopidogrel treatment and how do they impact dose selection in patient subgroups?

Background: CYP2C19 polymorphisms, age, obesity and DDlIs
have been identified as important factors impacting clopidogrel-
mediated antiplatelet effects. Dose adjustment is recommended
for CYP2C19 PMs (boxed warning from FDA).

g
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Conclusions: Higher maintenance doses are required for CYP2C19 IMs and PMs compared to EMs. A further dose
increase may be needed in morbidly obese and super obese subjects. Results of our global sensitivity analysis suggest
that interindividual differences in relative bioavailability (F,), CES1 activity and baseline platelet reactivity (MPAO) are
other sources of clinically significant variability in response to clopidogrel treatment.

Samant et al. Clin Pharmacol Ther. 2017; 101(2):264-273 y@
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Cost-Effectiveness

& Differentiation

Key Question: Does the compound have sufficient differential potential to SoC to support
continuation of Phlb POC study in patients?

Little data to assess differentiation = Model-Based Meta Analysis  Differentiation Potential

Competition (SOC) 70 S 1o
on the market £ E 60 ‘E_
. 28 £ 75
. Competition s =50 G
Cmp Xin . - o
in Phase Il B 340 =
POC £ 2 uCmpX % 50
patoss 100 >100,000 §§30 uComp § = \;Yoase
. I [+ Standard of care (SOC - imilar
patients patients E 3 20 -mwRdAdolcvs 385 anna JU I, . ... . 5 . — R
oL E=
3.9_ E 10 ‘ = Response rate of 5%
o ﬁ \::15 considered
0 9 0 clinically relevant
Dose 2 Dose 3 o Comp | SOC
Inference

* Probability of Cmp X being comparable to that of the competitor was low without changes
in clinical strategy, despite it would offer improvement over current standard of care.

Conclusions

e Quantitative analysis enabled efficient decision making on a moderate effective drug
despite “little” data. Based on the limited available options to revise the clinical strategy
and the competitor substantially ahead in the development, the decision was made not to
enroll more patients, and stop the program

Bueters TJH et al, Informing Decisions in Discovery and Early Development Research Through Quantitative and Translational Modeling. y
From A Drug Candidate to the Clinic Today. F. Giordanetto (Ed.) Wiley-VCH Verlag GmbH & Co KGaA. In Press @
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Cost-Effectiveness

& Differentiation

Key Question: Can a dual GLP-1 + GIP agonist sufficiently differentiate from existing GLP-1
agonists for the treatment of type 2 diabetes?

Data — Extensive literature on incretin biology and their effects on both healthy volunteers
and patients with T2D.

Modeling Approach /Target Hypothesis\ /Quantitative Systerrs / Clinical Efficacy \

Physiologyically- Prediction

based modeling of e R e
human metabolism “oie-1 YO

using the Entelos i

Metabolism ﬁz;} Simiored

PhysiolLab k /
Results - The effect of high-exposure GIP was Inference - Some additional efficacy was

predicted to be -0.4% A1C in diabetics without any possible through dual incretin action, but
GLP-1 therapy. This delta was reduced to less than - the added benefit was still clinically
0.15% A1C with increasing concentration of GLP-1. similar to existing incretin therapies

Conclusion: The model could not make a firm case for superiority of a dual-agonist. This
analysis was a contributing piece to the project team’s recommendation to cease development

Rieger and Musante. Eur. J. Pharm. Sci. Oct. 2016. y@
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Cost-Effectiveness

& Differentiation

Key Question: What is the impact of dose regimens and trial designs, and different
patient populations, on cost-effectiveness of anti-cancer agents?

* Data - Efficacy and toxicity
models from multiple phase
Il and Ill trials involving the
anti-cancer drug eribulin.

* Method - Integrative
simulations of multiple mixed
effect models for toxicity and
efficacy biomarkers and
clinical outcomes.

* Result - Differential clinical
outcome and cost-
effectiveness profiles were
generated.

Differential survival (days)

Dose regimen 1 ma/m2 t=0,7

-2000 4

Differential cost (CU)

0
2000 +

Conclusions: Dose regimens, trial designs, and differences in patient populations can
significantly impact expected cost-effectiveness profiles. This study shows the value of PKPD
modeling to generate early mechanism-based predictions of cost-effectiveness

Van Hasselt et al. CPT Pharmacometrics Syst Pharmacol. 2015 Jul;4(7):374-85
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Cost-Effectiveness

& Differentiation

Key Question: Would a hypothetical new drug/technology offering better adherence for a

diabetes drug be more cost-effective compared to existing standard of care?

* Data & Model: PK-PD model linking dose with HbA1lc response was built using existing data for a once-daily
diabetes drug. Real world data from a large prescription history dataset was integrated with the PK-PD model
to quantify the impact of adherence on HbAlc response. These results were incorporated in a health economic

model to project the long-term impact on health outcomes.

PK-PD model

Randomized
Clinical Tr|a| % Cost-Effectiveness Analysis

Prediction of
Response as Health Cost-
a Function of Economic Effectlveness

Real World Dataset w/ Adherence

Prescription Individual
Refill Hlstory ,, Patient
(adherenc Dosing

Real World Factor

* Inference: With the observed adherence rate for once-daily diabetes drug, hypothetical new drug providing
better adherence was cost-effective (using € 25,000 per QALY gained as threshold) only for treating patients

who were less than 80% compliant with the old drug
Conclusions: PK/PD models could provide otherwise not-yet available information as inputs
for health economic models to allow meaningful cost-effectiveness evaluation of a new drug

vs. an old drug during the development of a new drug

Jain L, Chen J, Lala M, Davis C, Liu J, Chain A, Tatosian T, Liu Y, Visser SA, Tunceli K, Mavros P, Jadhav P. Integration of PK-PD and y
Health Economic Modeling to Assess Cost-Effectiveness of Improving Adherence in Real World Setting. Poster at ASCPT 2016 @
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